THE UNITED REPUBLIC OF TANZANIA NATIONAL EXAMINATIONS COUNCIL OF TANZANIA DIPLOMA IN SECONDARY EDUCATION EXAMINATION

732/2A

CHEMISTRY 2A

(ACTUAL PRACTICAL A)

Time: 3 Hours

Thursday, 16th May 2019 a.m.

Instructions

- 1. This paper consists of three (03) questions.
- 2. Answer all questions.
- 3. Question one (1) carries twenty (20) marks and the rest carry fifteen (15) marks each.
- 4. Qualitative Analysis Guide Sheet may be used after a thorough check by the supervisor.
- 5. Cellular phones, programmable calculators and any unauthorized materials are not allowed in the examination room.
- 6. Write your Examination Number on every page of your answer booklet(s).
- 7. You may use the following constants: Atomic masses: H = 1, C = 12, O = 16, Na = 23, Cl = 35.5. 1 litre = 1 dm³ = 1000 cm³.

Page 1 of 4

prof.exams.may19

You are provided with the following:

QP: A solution made by dissolving 3g of H₂C₂O₄ WH₂O in 0.5 dm³.

RS: A solution made by dissolving 2g NaOH in 1 dm³.

POP: Phenolphthalein indicator.

Carry out a volumetric analysis and then answer the questions that follow:

- (a) Use relevant table of results to show titre data regarding burette reading.
- (b) (i) What was the colour change?
 - (ii) Specify the volume of the pipette used and calculate the mean titre volume.
- (c) Write a balanced chemical equation between solution QP and RS.
- (d) Calculate:
 - (i) Molarity of solution RS.
 - (ii) Concentration of solution QP in g/dm³.
 - (iii) Molar mass of QP.
 - (iv) The value of W in $H_2C_2O_4$ W H_2O .
- You are provided with the following:
 - **A:** A solution of 0.5M sodium thiosulphate.
 - **B**: A solution of 0.1M sulphuric acid.

Glass stirring rod.

White piece of paper.

Stop watch.

Procedure

- (i) Using a blue /black pen, put a mark 'X' on a white sheet of paper and using masking tape, attach it to the bottom outer part of a 50 cm³so that the mark 'X' is visible through the solution when viewed from the mouth of the beaker.
- (ii) Use a measuring cylinder to measure exactly 10cm^3 of solution A and put it into the beaker with the glued paper.
- (iii) Use another measuring cylinder to measure 10cm^3 of solution **B** and pour into the beaker containing solution **A**; and immediately start the stopwatch. Using a glass rod stir the reaction mixture and record the time taken in seconds for the cross to disappear completely.

Page 2 of 4

prof.exams.may19

(iv) Repeat the procedures (ii) and (iii), but this time vary the concentration of solution A by diluting with distilled water as shown in Table 1.

Table 1: Experimental data.

Volume of S ₂ O ₃ ⁻² (cm ³)	Volume of H₂O (cm³)	Volume of H ₃ O ⁺ (cm ³)	t (sec)	[S ₂ O ₃ ·²] M	1/[S ₂ O ₃ · ²]	Log [S ₂ O ₃ ⁻²]
8	2	10				
6	4	10				
4	6	10				101/2
2	8	10				

Questions

- (a) Complete the table.
- (b) Using your results, draw the following graphs:
 - (i) $[S_2O_3^{-2}]$ (y-axis) against time (x-axis).
 - (ii) $1/[S_2O_3^{-2}]$ (y-axis) against time (x-axis).
- (c) From the graphs:
 - (i) Comment on the shape of graphs drawn.
 - (ii) Determine the order of reaction with respect to [S₂O₃⁻²].
- 3. You are provided with a sample D which contains one cation and one anion.
 - (a) Carry out qualitative analysis tests to identify the cation and anion present in the sample using the format and reagents provided in Table 2.

Table 2: Experimental results

Sn	Experiment	Observation	Inference
(i)	Observe the appearance of sample D .	9	
(ii)	Using nichrome wire heat the solid sample on a flame.		
(iii)	Heat the solid sample in a clean and dry test tube.		
(iv)	To the solid sample in a test tube add dilute HCl. If no reaction warm gently.		

Sn	Experiment	Observation	Inference
(11)	To the sample solution in a test tube add BaCl ₂	Million State Company	
(v)	solution. If the precipitates form, add dilute HCl.		/
(vi)	To a sample solution in a test tube add		171.2
11 /1	ammonium oxalate solution.		

- (b) Write the conclusion of the results indicating the following:
 - (i) Cation and anion present in sample D.
 - (ii) Molecular formula of sample D.
- (c) Write an equation for the reaction which took place in experiment (iii).